

TECHNICAL MEMORANDUM

X - 69

AN INVESTIGATION AT MACH NUMBERS FROM 1.47 TO 2.87 OF STATIC STABILITY CHARACTERISTICS OF NINE NOSE CONES

DESIGNED FOR SUPERSONIC IMPACT VELOCITIES

By Donald T. Gregory and Ausley B. Carraway

Langley Research Center Langley Field, Va.

	734	48 i			GAT	
~	Nella		(THRU)	(SPECIAL	HARDLING
FORM 602	(ACCESSION NUMBER) (PAGES)		(CODE)			7
>	(NASA CR OR TMX OR AD NUMBER)		(CATEGORY)			***
V.			ez ma jola.		· House	7

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON
September 1959

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL MEMORANDUM X-69

AN INVESTIGATION AT MACH NUMBERS FROM 1.47 TO 2.87 OF
STATIC STABILITY CHARACTERISTICS OF NINE NOSE CONES

DESIGNED FOR SUPERSONIC IMPACT VELOCITIES*

By Donald T. Gregory and Ausley B. Carraway

SUMMARY

An investigation of nine nose cones designed for supersonic impact velocities has been conducted in the Langley Unitary Plan wind tunnel to determine the axial force and static longitudinal stability characteristics. These configurations are suitable for use as nose cones for either intermediate-range or intercontinental ballistic missiles. The model dimensional parameters that varied were nose shape and body flare length. One body incorporated flared fins.

Tests were performed at Mach numbers of 1.47, 1.97, 2.36, and 2.87 and at Reynolds numbers per foot from 0.7×10^6 to 8.6×10^6 .

INTRODUCTION

Nose cones for intermediate-range and intercontinental ballistic missiles up to this time have been designed for subsonic impact velocities, primarily because of the high heat rates encountered by the cones during atmospheric reentry. An increase in the impact velocities of such configurations is desirable, since this will minimize the problems of dispersion and perhaps interception. Improvements in materials for nose-cone heat shields and accurate determination of heat-transfer coefficients have provided impetus for the design of supersonic impact warheads. Knowledge of the stability and drag characteristics of such configurations is, obviously, necessary in order that they may be fired at a target with a high degree of accuracy.

The Langley Research Center of NASA has accordingly initiated a research program to determine static and dynamic stability characteristics of several basic configurations suitable for supersonic impact velocities. This program provides for tests of these configurations in several Langley facilities in the supersonic and hypersonic speed regime, and through a large Reynolds number range.

The present paper contains the results of tests in the Langley Unitary Plan wind tunnel to determine the axial force and the static longitudinal stability characteristics of nine configurations at Mach numbers of 1.47, 1.97, 2.36, and 2.87 and at Reynolds numbers per foot from 0.7×10^6 to 8.6×10^6 . Angle of attack was varied from approximately -1^0 to 29^0 . The results are presented without analysis.

SYMBOLS

The aerodynamic force and moment data are referred to the body axes (fig. 1) with the origin at the center of gravity (fig. 2). Symbols used are defined as follows:

A_j cross-sectional area at juncture of nose and body (based on 4-in. diameter), sq ft

$$C_A$$
 axial-force coefficient, $\frac{Axial force}{qA_j}$

$$^{C}A$$
, c chamber axial-force coefficient, $\frac{Chamber\ axial\ force}{qA}$,

$$C_{m}$$
 pitching-moment coefficient, $\frac{\text{Pitching moment}}{q^{A}_{,i}d_{b}}$

$$C_{m_{\alpha}}$$
 slope of pitching-moment curve near $\alpha = 0^{\circ}$, $\frac{\partial C_{m}}{\partial \alpha}$

$${
m C_N}$$
 normal-force coefficient, ${
m Normal\ force}\over {
m qA}_{
m j}$

d_b base diameter, 6.072 in.

$\iota_{\mathtt{n}}$	length of nose, in.
$l_{\mathbf{f}}$	length of flare, in.
М	free-stream Mach number
q	free-stream dynamic pressure, lb/sq ft
R	Reynolds number per foot
α	angle of attack of model center line, deg

L

3

APPARATUS AND TESTS

Tunnel

Tests were conducted in the low Mach number test section of the Langley Unitary Plan wind tunnel, which is a variable-pressure, continuous-flow tunnel. The test section is 4 feet square and 7 feet long. The nozzle leading to the test section is of the asymmetric, sliding-block type, which permits a continuous variation in test section Mach number from about 1.47 to 2.87.

Models

Profile and rear-view drawings of the models tested are shown in figure 2. The models are identified as models 1 to 9 and, as may be noted from figure 2, have been divided into three families dependent on nose shape. The first family (models 1 to 4) had flat-face noses of circular cross section tapering from a diameter of 1.752 inches at the front to a diameter of 4.000 inches at a distance 3.084 inches from the front. The second family (models 5 to 7) had rounded noses of 1.372-inch nose radius, which faired into the body cross section (of 4.000-inch diameter) at a distance 2.492 inches from the front. The third family (models 8 and 9) also had flat-face noses tapering in diameter from 1.204 inches at the front to 4.000 inches at a distance 3.836 inches from the front. In each family, the body flare length varied from about 6 inches to 15 inches; in addition, one family included a model with a finned flare (model 4). In order to clarify further the dimensional characteristics of the models, the nose lengths l_n and flare lengths l_f are given as ratios with respect to the base diameter d_D (6.072 in.) as follows:

Model.	Nose-length ratio, $l_{ m n}/d_{ m b}$	Flare-length ratio, $l_{\mathtt{f}}/\mathtt{d}_{\mathtt{b}}$
1 2 3 4 5 6 7 8 9	0.51 .51 .51 .51 .41 .41 .41 .63	2.52 1.82 .97 2.52 2.52 1.82 .97 2.52

Test Conditions and Procedure

The tests were conducted at Mach numbers of 1.47, 1.97, 2.36, and 2.87 and at stagnation pressures that were varied in order to provide a constant test Reynolds number per foot of 3.5×10^6 . In addition, at a Mach number of 1.97 the Reynolds number per foot was varied from 0.7×10^6 to 8.6×10^6 . The dewpoint at stagnation pressure was maintained below -30° F in order to assure negligible condensation effects. Stagnation temperatures for the test were 125° F for Mach numbers 1.47 and 1.97 and 150° F for Mach numbers 2.36 and 2.87. The angle of attack was varied from approximately -1° to 29°, and sideslip angle was maintained near 0°.

All models incorporated a fixed transition strip 1 inch behind the forward end of the nose. This strip was composed of a band of 0.012 carborundum grain 1/32 inch wide.

Measurements

Aerodynamic forces and moments were determined by means of an internal six-component strain-gage balance housed within the model. The balance was rigidly fastened to the sting support system.

Balance chamber pressure was measured with a single static orifice located in the vicinity of the strain-gage balance.

Schlieren photographs of each of the models were taken at all test Mach numbers and at various model attitudes and test conditions.

Corrections

Calibration of the tunnel test section has indicated that model buoyancy effects are negligible. Corrections to the model angle of attack have been made for both tunnel airflow misalinement and deflection of model and sting support due to aerodynamic load.

The axial-force data presented herein have been adjusted to correspond to zero balance-chamber axial force. A listing of the chamber axial-force coefficients for the various models, Mach numbers, and Reynolds numbers is presented in table I.

Accuracy

Based upon balance calibration and repeatability of data, it is estimated that the various measured quantities are accurate within the following limits:

Quantity	$R = 0.7 \times 10^6$	$R = 3.5 \times 10^6$	$R = 8.6 \times 10^6$
c _A	±0.050	±0.010	±0.005
$C_{A,c}$	±0.014	±0.002	±0.001
\mid c_{m}	±0.028	±0.004	±0.002
\mid c_{N}	±0.150	±0.030	±0.015
α, deg	±0.1	±0.1	±0.1

The maximum deviation of the local Mach number from the free-stream value given is ± 0.015 .

PRESENTATION OF RESULTS

Schlieren Photographs

Typical schlieren photographs for the various models are presented in figure 3 for a Mach number of 2.87 at $\alpha \approx 0^{\circ}$. Schlieren photographs of model 7 with Mach number, Reynolds number, and angle of attack varied are shown in figures 4, 5, and 6, respectively.

The aerodynamic characteristics for all models are presented in figures 7 to 15, where the coefficients of normal force C_N , axial force C_A , and pitching moment C_m are plotted against angle of attack. Mach number is used as a variable in the (a) parts of figures 7 to 15 and Reynolds number as a variable in the (b) parts of these figures. Figure 16 is a summary plot showing the pitching-moment slopes $C_{m_{\alpha}}$ and the drag levels $\left((C_A)_{\alpha=0} \circ \right)$ for the different models as functions of Mach number.

The following table is included for convenience in locating the figures containing the aerodynamic data for the various models:

			Figure
Aerodynamic characteristic	of model 1 in pitch		
Aerodynamic characteristic	of model 2 in pitch	• , •	. 8
Aerodynamic characteristic	of model 3 in pitch		9
Aerodynamic characteristic	of model 4 in pitch		10
Aerodynamic characteristic	of model 5 in pitch		11
Aerodynamic characteristic	of model 6 in pitch		12
Aerodynamic characteristic	of model 7 in pitch		. 13
Aerodynamic characteristic	of model 8 in pitch		14
	of model 9 in pitch		15
Summary plot of $C_{m_{\mathfrak{A}}}$ and	$(C_A)_{\alpha=0}$ against		
ma.	(/u=0		_
Mach numbers for models	ested $(R = 3.5 \times 10^{\circ})$. 16

In order to expedite publication of these data, no analysis is attempted.

CONCLUDING REMARKS

Aerodynamic data have been presented for nine nose-cone configurations designed for supersonic impact velocities. The model dimensional parameters were nose shape and body flare length. One body incorporated flared fins. The results presented herein include axial-force and longitudinal stability characteristics, and schlieren photographs at Mach numbers of 1.47, 1.97, 2.36, and 2.87 and at Reynolds numbers per foot from about 0.7×10^6 to 8.6×10^6 .

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., June 4, 1959.

TABLE I.- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS AT ALL MODEL ATTITUDES AND TEST CONDITIONS

L-356

(a) Model 1

 $\left[R = 5.5 \times 10^6\right]$

2.87	CA, c	0.2013 1.1981 1.1993 2.202 2.202 2.2562 2.2562 2.201 2.201 2.201 2.203
M	a, deg	-0.81 20.20 1.16 2.14 3.13 6.10 11.17 16.34 21.75 26.70
2.36	CA, c	0.2538 .2652. .2652. .3034. .3192 .3637 .4097 .3786.
W	a, deg	0.1.9.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
1.97	CA, c	0.3043 .3118 .3278 .3278 .3246 .3746 .4335 .5233 .5500
M = 1.97	α, deg	0.29 7.28 7.38 7.35 12.45 11.91 12.32 23.32 23.32 23.32
M = 1.47	CA, c	0.3861 .3857 .3954 .4140 .4258 .5074 .6752 .7836
	a, deg	-0.45 -0.45 -0.45 -0.53 -0.63

[M = 1.97]

80 3 3

<u> </u>		
8.6 × 10 ⁶	CA, c	0.3239 .3322 .3472 .3475 .3955 .4536 .4683 .4683
R = 8.6	α, deg	01.02.44 8.45.99 9.44.15.99 13.45.15.25 13.65.15
× 10 ⁶	CA, c	0.3198 .3271 .3434 .3434 .3916 .3916 .491 .5353 .4976
$R = 6.5 \times 10^6$	a, deg	0.33 5.1.9 8.05 13.67 12.67 41.05
, × 10 ⁶	CA, c	0.3121 .3199 .3561 .3578 .3874 .3874 .3876 .5505 .5525 .4988
R = 4.9 × 10 ⁶	a, deg	, o , z , z , z , z , z , z , z , z , z
5 × 106	c, A, c	0.3043 .3118 .3278 .3246 .3456 .3746 .5253 .5502
R = 3.5 ×	a, deg	0.29 1.28 3.33 4.33 12.45 12.66 17.91 23.32 28.33
2.1 × 10 ⁶	۵,4,	0.2964 .3025 .3171 .3375 .3629 .4223 .5193 .5193
R = 2.1	a, deg	0.30 1.27 2.19 3.19 4.16 17.17 12.19 17.32 22.63
= 0.7 × 10 ⁶	CA, c	0.2988 .3041 .3744 .3584 .4289 .5128 .5282 .4930
R = 0.7	a, deg	0.1.0.8 0.0.0.9 0.0.0.9 0.0.0.9 0.0.0.9 0.0.0.9 0.0.0.9

TABLE I.- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS

AT ALL MODEL ATTITUDES AND TEST CONDITIONS - Continued

(b) Model 2

 $\left[R = 3.5 \times 10^6\right]$

ඉහර ම ම ම ම ම

-3 -3 -3 -3

@ ## @ @ @ @ # @

00000

		
M = 2.87	CA, c	0.2157 .2131. .2140. .2203. .2325. .2325. .2326. .2326. .2328.
M =	a, deg	-0.78 -2.15 -2.15 -3.10 -6.05 -11.02 -11.02 -11.12 -2.146 -26.31
M = 2.36	CA, c	0.2691 .2780 .2919 .3055 .3657 .4115 .4075 .3620
≡ W	a, deg	0.63 1.56 2.57 7.52 4.54 12.59 17.74 23.14 28.02
1.97	CA, c	0.3200 .3254 .3371 .3371 .3579 .4383 .5256 .5256 .5048
M = 1.97	a, deg	0.32 1.26 2.24 3.27 7.30 17.55 17.65 22.99
74.1 = M	CA, c	0.4086 4115 4167 4325 4325 4325 5189 6629 7709 7732
	a, deg	-0.43 -0.52 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53

 $\left[M = 1.97\right]$

9 900 9 8 0 9 0 9 0

1			
	= 8.6 × 10 ⁶	CA, c	0.3424 .3485 .3631 .3814 .3814 .4042 .4604 .5603 .4047
	R = 8.6	α, deg	0.34 1.44 3.68 3.68 8.21 13.90 19.47 25.12
	× 10 ⁶	CA, c	0.3361 .3434 .3547 .3775 .3775 .4535 .4535 .5343 .5343 .5343
	R = 6.5 ×	α, deg	0.32 1.42 7.45 7.54 7.81 13.30 13.30 24.23 29.23
	× 106	CA, c	0.3287 .3244 .3480 .3480 .3666 .3897 .4475 .5304 .5333 .5050
	R = 4.9 ×	a, deg	0.33 1.51 2.58 2.58 7.57 18.85 18.13 23.57
	, × 10 ⁶	CA, c	0 .3200 .3224 .3271 .3371 .3779 .3786 .4583 .5236 .5248 .5048
	R = 3.5 ×	a, deg	0.32 1.26 3.24 7.30 7.30 17.65 17.65 27.93
	2.1 × 10 ⁶	CA, c	0.3085 2142 3142 3241 3657 4265 4265 4260 4994 4994
	R = 2.1	a, deg	0.30 1.22 2.20 3.16 4.12 7.10 17.16 22.44 27.30
	= 0.7 × 10 ⁶	CA, c	0.3056 .3146 .3146 .3248 .3387 .3530 .4356 .5128 .4359 .4999
	R = 0.7	a, deg	0.26 1.17 2.13 3.08 3.98 6.87 11.70 11.70 11.669 22.88

TABLE I.- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS AT ALL MODEL ATTITUDES AND TEST CONDITIONS - Continued

(c) Model 3

 $\left[\mathrm{R} = 5.5 \times 10^6\right]$

		W+440N0P0P
M = 2.87	CA, c	2.45.0 2.49.0 2.49.2 2.45.2 2.465.2 2.662.2 2.707.2 2.707.2 2.707.2 2.707.2
M	a, deg	21.15 2.15 3.08 5.99 10.93 16.00 21.27
M = 2.56	CA, c	0.3034 .3046 .3146 .3289 .3395 .3729 .4002 .4041
W =	α, deg	0.62 11.58 23.54 4.47 7.47 12.49 17.61 22.93
1.97	CA, c	0.3532 .3585 .3587 .3780 .3968 .4526 .5193 .5517 .5945
M = 1.97	α, āeg	0.29 1.26 2.26 7.26 7.28 17.39 17.39 17.39
74.L = M	CA, c	7474.0 5764. 5664. 5684. 5684. 6646. 7970.
	α, deg	-0.45 2.7.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2

 $\left[M=1.97\right]$

	, × 106	CA, c	0.3767 5889 5889 5889 5894 574 5774 5784 5784 8784
	R = 8.6 × 10 ⁶	α, deg	0.538 2.1.0.2.4.67 2.5.2.4.69 2.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
	× 10 ⁶	CA, c	0.3715 .3768 .3783 .3835 .3964 .4670 .5252 .5553 .4908
	R = 6.5 × 10 ⁶	α, deg	0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	× 106	CA, c	0.3640 .3681 .3758 .3890 .4052 .4614 .5250 .5756
ח	R = 4.9 ×	a, deg	0.53 4.45 5.54 16.00 18.00 18.00 18.00
J	R = 3.5 × 10 ⁶	CA, c	0.3532 .3585 .3587 .3780 .3968 .3968 .5913 .5717 .5747
		a, deg	0.29 1.26 7.25 1.26 1.26 1.25 1.25 1.35 2.27 2.28
	2.1 × 10 ⁶	CA, c	0 444. 4368. 4388. 5044. 5047. 5047. 5047.
	R = 2.1	a, deg	0.30 1.25 2.18 3.18 4.13 17.05 17.11 22.36 27.19
	= 0.7 × 10 ⁶	CA, c	0.3378 .3392 .3363 .3449 .3563 .3753 .5099 .5253
	R = 0.7	a, deg	6.88 1.69 6.88 11.69 11.69 12.64 16.64

TABLE 1.- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS

AT ALL MODEL ATTITUDES AND TEST CONDITIONS - Continued

(d) Model 4

106
×
ů
3
11

		· · · · · · · · · · · · · · · · · · ·
2.87	o, A	0.1505 .1511 .1499 .1496 .1551 .1551 .1598 .1598
M = 2.87	a, deg	-0.76 2.15 3.13 6.09 11.09 16.27 22.69 26.62
.36	CA, c	0.1955 .1964 .1947 .1953 .1989 .2208 .2258 .2259
M = 2.36	α, deg	0.0 2.0 2.0 7.0 12.0 12.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13
1.97	CA, c	0.2307 .2295 .2371 .2383 .2418 .2641 .2811 .2829 .3044
M = 1.97	α, deg	0.31 1.31 2.32 7.33 7.33 12.31 17.78 23.24 23.24
74.1 = M	CA, c	0.2864 2.845 2.885 3.032 3.136 3.136 3.873 3.873 4.153 4.153
	a, deg	-0.48 -0.52 -0.53

[M = 1.97]

	5 × 10 ⁶	CA, c	0.2408 2403 2466 2466 2469 2751 2876 2898 2898
	R = 8.6 x	a, deg	0.36 1.50 2.73 7.79 4.93 14.06 19.85 25.81 31.21
	, × 10 ⁶	CA, c	0.2378 .2774 .244.8 .244.8 .244.8 .277.9 .285.9 .304.7 .304.7
	R = 6.5 × 10 ⁶	a, deg	0.55 1.45 2.50 3.61 4.68 7.97 13.42 18.99 24.76
	4.9 × 10 ⁶	CA, c	0.2345 .2534 .2545 .2419 .2641 .2637 .2851 .3050
י	R = 4.9	a, deg	0.29 1.36 2.36 2.37 1.49 1.49 1.8.32 23.35 23.35
J	1 × 106	CA, c	0.2307 .2295 .2297 .2341 .2841 .2821 .2829 .3044 .3044
	R = 3.5 × 10 ⁶	a, deg	0.127.127.23.24.74.73.33.24.25.24.28.28.28.28.28.28.28.28.28.28.28.28.28.
	2.1 × 10 ⁶	CA, c	0.2261 2247 2319 2331 2369 2368 2783 2783 2768 2768
	R = 2.	a, deg	0.29 1.26 2.21 3.18 4.17 7.13 12.10 17.24 22.60
	1 = 0.7 × 10 ⁶	CA, c	0 222.0 7223.7 7223.5 7723.8 8083. 4772. 8083.
	R = 0.7	a, deg	0.88 0.13 0.13 0.23 0.39 0.39 11.11 12.13 14.33

TABLE I .- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS

AT ALL MODEL ATTITUDES AND TEST CONDITIONS - Continued

(e) Model 5

Γ.	106
	×
	ıÜ.
	3
	. 11
L	œ

2.87	CA, c	0.2241 8.22.8 8.22.8 8.22.18 8.22.1 8.22.1 1.22.1 1.22.1 1.20.2 3.02.2 3.00.2
_ M	a, deg	-1.87 -1.87 -1.11 -2.16 5.18 10.33 15.37 20.49
M = 2.36	CA, c	0.2850 .2850 .2875 .2875 .3966 .3395 .4285 .4288
ii X	a, deg	-0.47 -0.47 1.34 2.51 3.57 6.60 11.79 16.85 22.02 22.02
M = 1.97	CA, c	0.3537 .3495 .3495 .3684 .3828 .4208 .5218 .5772 .5772
= W	α, deg	-0.85 -1.17 -1.17 -2.20 -2.20 -1.14.3 -1.16.95 -2.50 -
M = 1.47	CA, c	0 4488 4748 4779 4774 4747 6776 8188 823 8188
	α, deg	-1.63 -7.58 -1.41

$\left[M = 1.97\right]$

× 106	CA, c	0.3777 .3767 .3782 .3860 .3960 .1690 .4926 .59067
R = 8.6 x	α, deg	6. 1.9 v.0 1.1 2.88 9.4.88 8.4.7 2.88
= 6.5 × 10 ⁶	CA, c	4767. 5677. 57766. 5786. 5936. 67876. 57876. 67876.
R = 6.5	α, deg	-0.88 -1.19 -2.18 -2.18 -2.57 -2.25 -2.25
× 106	CA, c	0.3613 .3574 .3650 .3774 .3891 .4279 .5112 .5786
R = 4.9 ×	a, deg	-0.86 .15 11.18 3.23 5.23 6.30 11.55 11.55 11.96 21.96
× 106	CA, c	0.3537 .3495 .3570 .3584 .3822 .4208 .5218 .5772 .5772
R = 3.5 ×	a, deg	-0.85 -1.17 -1.17 -3.20 -6.24 -11.43 -16.51 -2.69 -2.69
2.1 × 106	CA, c	0 .3451 .3485 .3491 .3755 .3751 .4002 .5020 .5588 .5663
R = 2.1	a, deg	4.84 2.15 2.15 2.16 6.18 1.32 1.32 1.32 1.32 1.32 2.13 2.14 3.26 3.26 3.26 3.26 3.26 3.26 3.26 3.26
R = 0.7 × 10 ⁶	CA, c	0.3349 .3408 .3408 .3502 .3585 .3585 .4916 .4916
	α, deg	6. 84 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

TABLE I.- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS AT ALL MODEL ATTITUDES AND TEST CONDITIONS - Continued

(f) Model 6

00000

3333

$$\left[R = 3.5 \times 10^6\right]$$

2.87	CA, c	0.2298	.2332	.2291	.2293	.2328	.2472	.2727	.2872	.2976	.3013
M = 2.87	α, deg	-1.86	98:-	.14	1.11	2.15	5.17	10.31	15.33	20.44	25.66
M = 2.36	CA, c	1	 	1 1 1	1 1 1	 	1 1 1	1 1	 	1 1 1	1
W	a, deg	1 1 1	 	1 1 1	! ! !	1 1 1	1 1 1	1 1	! ! !	1 1	
M = 1.97	CA, c	0.3632	.3635	.3667	.3765	.5893	5424·	.5095	.5758	.5695	.5566
H M	α, deg	-0.85	.25	1.17	2.13	3.19	6.22	11.40	16.46	21.63	26.87
M = 1.47	CA, c	0.5055	7564.	0/64.	.5086	.5276	.5651	.6789	.8028	.8632	.8275
	a, deg	-1.63	58	.43	1.40	24.5	5.49	10.65	15.71	20.90	26.18

(3) (3) (3) (3) (3) (3) (3)

TABLE I.- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS AT ALL MODEL ATTITUDES AND TEST CONDITIONS - Continued

(g) Model 7

 $\left[R = 3.5 \times 10^{6}\right]$

2.87	CA, c	0.2460 2436 2436 2414 2415 2442 2607 2812 3079 3113
M = 2.87	α, deg	1.85 1.15 11.17 15.17 10.29 10.29 14.85 25.73
2.36	CA, c	0.5142 .5155 .5183 .5281 .5287 .5288 .5508 .7508 .4570
M = 8	a, deg	-0.51 .53 1.53 2.50 3.55 6.58 11.74 16.79 21.92
M = 1.97	CA, c	0.3967 .4005 .4005 .4008 .4008 .4150 .4420 .5685 .5905
	a, deg	-0.84 1.17 2.13 2.18 6.22 11.38 16.45 22.59
M = 1.47	CA, c	0.5526 57487 5715 5715 5763 6079 6871 7829 7829
	a, deg	-1.62 -1.58 -1.43 -1.43 -1.45 -1.45 -1.45 -1.569 -1.569 -1.569

[M=1.97]

ককণ জ জ পু জ পু জ

8.6 × 10 ⁶	CA, c	0.5066 1.4864 1.4662 1.4586 1.5986 1.5986 1.59867
R = 8.6	a, deg	0.15 1.20 2.19 5.27 6.39 11.72 17.01 22.38 27.88
× 10 ⁶	CA, c	0.4091 .4080 .4119 .4195 .4195 .4559 .5971
R = 6.5 × 10 ⁶	a, deg	-0.87 .15 1.17 .1.17 .5.16 .5.23 .6.31 .22.06 .27.42
× 106	CA, c	0.4037 4028 4073 4073 414. 5224 454. 5060 5776. 57165.
R = 4.9 ×	a, deg	6.85 1.17 7.11 7.12 6.86 16.33 16.33 21.81
5 × 106	CA, c	0.3967 .3965 .4005 .4005 .4150 .4150 .4420
R = 3.5 ×	a, deg	-0.84 .15 1.17 2.13 5.18 6.22 11.38 16.45
2.1 × 106.	CA, c	0.3879 .3870 .3982 .3963 .4039 .4846 .5520 .5520
R = 2.1	a, deg	6.83 2.16 2.16 5.17 6.17 16.29 16.29
= 0.7 × 10 ⁶	GA, c	0.3642 3.691 3.748 3.838 5.3936 4.191 4.191 5.115 5.115
R = 0.7	α, deg	44.1.1.9.9.9.9.9.9.9.1.1.1.1.1.1.1.1.1.1

L-356

TABLE I.- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS

AT ALL MODEL ATTITUDES AND TEST CONDITIONS - Continued

(h) Model 8

 $\boxed{R = 5.5 \times 10^{6}}$

2.87	CA, c	0.2129 2058 2051 1941 7402. 7252. 4253. 7893. 7093.
M = 2.87	a, deg	-2.07 99 99 1.21 2.25 5.45 16.06 21.38 26.27
2.36	CA, c	0.2534 .2522 .2617 .2830 .3038 .3571 .4165 .4169 .4139
, = M	α, deg	-0.67 .40 1.47 2.67 3.71 6.99 12.37 17.72 23.09
.97	CA, c	0.3060 .3042 .3111 .3305 .3539 .4256 .5317 .5819 .5819
M = 1.97	a, deg	1.00 1.12 2.32 6.33 12.80 17.55 22.89
74.L = M	CA, c	0.4009 .3882 .3851 .3978 .4160 .4932 .6722 .8106
	a, deg	-1.8 -1.68 -1.61 -1.61 -2.99 -1.51 -1.51 -1.51 -1.51 -1.51 -1.52 -1.52 -1.53 -

্ ও ও ও ও ও ও ও ১ ও

[M = 1.97]

× 106	CA, c	0.3287 3.25.5 3.331 3.538 3.791 3.791 5.515 5.507 5.5155
R = 8.6 ×	a, deg	1.20 1.39 2.72 3.95 7.70 13.95 19.88 25.68
× 106	CA, c	0.3221 2125 22269 3727 3721 3721 4433 4932 4842
R = 6.5 x 1	a, deg	1.12 41. 2.58 2.58 7.75 14.75 18.83 18.93 26.53
= 4.9 × 10 ⁶	CA, c	0.3144 .3122 .3122 .3192 .3192 .3630 .3639 .5375 .5375 .5382
R = 4.9	a, deg	1.04 1.12 1.26 2.16 3.58 6.99 12.66 18.18 23.65
= 3.5 × 10 ⁶	CA, c	0.3060 .3042 .3111 .3111 .3305 .3339 .4256 .5317 .5317 .5307
R = 3.5	a, deg	1.00 1.12 2.12 3.43 6.73 17.55 22.89 27.84
2.1 × 10 ⁶	CA, c	0.2954 2934 3005 3005 3169 3405 4120 5457 5457 7747
R = 2.	α, deg	6.96 7.19 7.19 7.19 16.95 16.95 16.95
= 0.7 × 10 ⁶	CA, c	0.2948 .2925 .2928 .2938 .3157 .3346 .5346 .5763 .5763
R = 0.7	α, deg	-0.93 01.06

TABLE I.- LISTING OF CHAMBER AXIAL-FORCE COEFFICIENTS FOR ALL TEST CONFIGURATIONS AT ALL MODEL ATTITUDES AND TEST CONDITIONS - Concluded

(1) Model 9

 $\left[R = 5.5 \times 10^6\right]$

		·····
M = 2.87	CA, c	0.2466 241. 241. 251. 251. 2797. 2797. 2797. 2797. 2797. 2797. 2797. 2798. 2798.
	α, deg	-0.75 -0.75 -0.15 -0.05 -0.05 -0.11 -0.15 -0.15 -0.15 -0.16 -0.15 -0.16 -0.15 -0.16
M = 2.36	CA, c	0.3049 .3109 .3249 .3371 .3511 .3800 .4170 .4064
	a, deg	0.64 1.556 1.557 1.557 1.566 1.566 1.577 1.573 1.573 1.573 1.574
M = 1.97	°, A	0.3590 3737 3737 3737 4103 4645 5257 5257 5506
	a, deg	0.31 1.30 2.27 2.28 4.27 17.30 12.45 17.65 22.98 22.98
M = 1.47	۰,A)	0 4579 4579 4623 4738 4738 4743 664 664 1747 1747
	a, deg	

$\left[M = 1.97\right]$

9 999 99 9 6 9 9 9 33 3 9 9 3 3 5 6 9 997 98

8.6 × 10 ⁶	CA, c	0.3866 2.3865 5.964 5.154 1.824 1.824 5.547 5.597 1.8397
R = 8.6	α, deg	0.37 1.46 2.58 4.77 8.17 15.89 19.48 25.10
= 6.5 × 10 ⁶	CA, c	0.3749 .37977 .3896 .4070 .4057 .4257 .5374 .5376 .5376 .53428
R = 6.5	α, deg	0.36 1.36 3.52 7.75 1.3.29 1.8.72 24.24 29.32
× 10 ⁶	CA, c	0.3675 .3728 .3783 .4000 .4196 .4718 .5315 .5315 .4960
R = 4.9 ×	α, deg	0.33 1.34 2.39 3.39 7.41 1.41 1.54 1.54 1.54 1.56 2.3.56
× 10 ⁶	CA, c	0.3590 .3635 .3737 .3901 .4103 .4645 .5257 .5554 .5506
R = 3.5 ×	a, deg	0.31 1.30 3.28 3.28 4.27 7.30 17.65 22.98 27.93
2.1 × 10 ⁶	CA, c	0 2745 2055 2055 2055 2055 2055 2057 2057 205
R = 2.1	a, deg	0.30 1.25 2.19 3.18 4.13 7.08 17.17 22.44 27.29
= 0.7 × 10 ⁶	CA, c	0.3441 5.463 5.3771 5.3708 5.3880 6.560 6.5550 6.5550 6.5553
R = 0.7	a, deg	0.28 3.12 3.12 6.12 6.13 11.73 11.73 11.73 11.73 11.88 21.88

Figure 1.- Body axes system. (Arrows indicate positive direction.)

(All dimensions in inches unless otherwise noted.) Figure 2.- Dimensions of models.

L-59-3052and 2.87 ≡ W Figure 3.- Typical schlieren photographs of all models at

L-356

 $E = 5.5 \times 10^6$ and $\alpha \approx 0^\circ$. Figure 4.- Typical schlieren photographs of model 7 at

M = 2.87

2.36

II N

 $R = 3.5 \times 10^6$

 $R = 2.1 \times 10^6$

 $R = 0.7 \times 10^6$

 $R = 4.9 \times 10^6$

L-59-3054 and $\alpha \approx 0^{\circ}$. M = 1.97Figure 5.- Typical schlieren photographs of model 7 at

α = -.5°

L-356

I-59-3035 Figure 6.- Typical schlieren photographs of model 7 through the angle-of-attack range at $R = 5.5 \times 10^6$. and M = 2.36

(a) Mach number effect. $R = 3.5 \times 10^6$.

Figure 7.- Aerodynamic characteristics of model 1 in pitch. $l_{\rm n}/d_{\rm b}=0.51;\ l_{\rm f}/d_{\rm b}=2.52.$

(b) Reynolds number effect. M = 1.97.

Figure 7.- Concluded.

(a) Mach number effect. $R = 3.5 \times 10^6$.

Figure 8.- Aerodynamic characteristics of model 2 in pitch. $l_{\rm n}/d_{\rm b}=0.51;\ l_{\rm f}/d_{\rm b}=1.82.$

(b) Reynolds number effect. M = 1.97.

Figure 8.- Concluded.

(a) Mach number effect. $R = 3.5 \times 10^6$.

Figure 9.- Aerodynamic characteristics of model 3 in pitch. $l_{\rm n}/d_{\rm b}=0.51;\ l_{\rm f}/d_{\rm b}=0.97.$

(b) Reynolds number effect. M = 1.97.

Figure 9 .- Concluded.

(a) Mach number effect. $R = 3.5 \times 10^6$.

Figure 10.- Aerodynamic characteristics of model 4 in pitch. $l_{\rm n}/d_{\rm b}$ = 0.51; $l_{\rm f}/d_{\rm b}$ = 2.52.

(b) Reynolds number effect. M = 1.97.

Figure 10.- Concluded.

(a) Mach number effect. $R = 3.5 \times 10^6$.

Figure 11.- Aerodynamic characteristics of model 5 in pitch. Round nose; $l_{\rm n}/d_{\rm b}=$ 0.41; $l_{\rm f}/d_{\rm b}=$ 2.52.

(b) Reynolds number effect. M = 1.97.

Figure 11 .- Concluded.

Figure 12.- Aerodynamic characteristics of model 6 in pitch. Round nose; R = 3.5×10^6 ; $l_{\rm n}/d_{\rm b}=0.41$; $l_{\rm f}/d_{\rm b}=1.82$.

(a) Mach number effect. $R = 3.5 \times 10^6$.

Figure 13.- Aerodynamic characteristics of model 7 in pitch. Round nose; $l_n/d_b = 0.41$; $l_f/d_b = 0.97$.

(b) Reynolds number effect. M = 1.97.

Figure 13.- Concluded.

(a) Mach number effect. $R = 3.5 \times 10^6$.

Figure 14.- Aerodynamic characteristics of model 8 in pitch. $l_{\rm n}/d_{\rm b}=0.63;\ l_{\rm f}/d_{\rm b}=2.52.$

(b) Reynolds number effect. M = 1.97.
Figure 14.- Concluded.

(a) Mach number effect. $R = 3.5 \times 10^6$.

Figure 15.- Aerodynamic characteristics of model 9 in pitch. $l_{\rm n}/d_{\rm b}=0.63;\ l_{\rm f}/d_{\rm b}=0.97.$

(b) Reynolds number effect. M = 1.97.
Figure 15.- Concluded.

Figure 16.- Summary of longitudinal stability characteristics of models tested. $R = 3.5 \times 10^6$.

